Parametrized Deep Q-networks Learning: Playing Online Battle Arena with Discrete- Continuous Hybrid Action Space

ثبت نشده
چکیده

Most existing deep reinforcement learning (DRL) frameworks consider action spaces that are either discrete or continuous space. Motivated by the project of design Game AI for King of Glory (KOG), one the world’s most popular mobile game, we consider the scenario with the discrete-continuous hybrid action space. To directly apply existing DLR frameworks, existing approaches either approximate the hybrid space by a discrete set or relaxing it into a continuous set, which is usually less efficient and robust. In this paper, we propose a parametrized deep Q-network (P-DQN) farmework for the hybrid action space without approximation or relaxation. Our algorithm combines DQN and DDPG and can be viewed as an extension of the DQN to hybrid actions. The empirical study on the game KOG validates the efficiency and effectiveness of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handling Continuous Space Security Games with Neural Networks

Despite significant research in Security Games, limited efforts have been made to handle game domains with continuous space. Addressing such limitations, in this paper we propose: (i) a continuous space security game model that considers infinitesize action spaces for players; (ii) OptGradFP, a novel and general algorithm that searches for the optimal defender strategy in a parametrized search ...

متن کامل

Active exploration in parameterized reinforcement learning

Online model-free reinforcement learning (RL) methods with continuous actions are playing a prominent role when dealing with real-world applications such as Robotics. However, when confronted to non-stationary environments, these methods crucially rely on an exploration-exploitation trade-off which is rarely dynamically and automatically adjusted to changes in the environment. Here we propose a...

متن کامل

Deep Reinforcement Learning in Parameterized Action Space

Recent work has shown that deep neural networks are capable of approximating both value functions and policies in reinforcement learning domains featuring continuous state and action spaces. However, to the best of our knowledge no previous work has succeeded at using deep neural networks in structured (parameterized) continuous action spaces. To fill this gap, this paper focuses on learning wi...

متن کامل

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking

A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...

متن کامل

Ized Action Space

Recent work has shown that deep neural networks are capable of approximating both value functions and policies in reinforcement learning domains featuring continuous state and action spaces. However, to the best of our knowledge no previous work has succeeded at using deep neural networks in structured (parameterized) continuous action spaces. To fill this gap, this paper focuses on learning wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017